
プレス順送金型の設計・製作 (金型グランプリへの挑戦)

2016102 池田 雄太 2016120 後藤 拓己

指導教員:遠藤 宏光 稗田 充宏

グランプリ課題

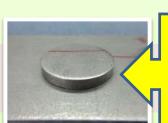
3Dモデル

課題のポイントは、 全せん断面!

製造上の注意点!

- ①金型の構造に「環境にやさしい」 と言える工夫をする。
- ②外周と穴のせん断面は板厚の 75%以上とする。
- ③製品底面平面度は, 0.07mm 以内とする。
- ④穴内面の面粗度規定(Rz10以下) は、せん断面のみに適用する。
- ⑤穴の位置精度は, 0.05mm以内に 収めること。
- ⑥ダレは外周で0.5mm以内, ダレ高 さは0.2mm以内に収めること。
- ⑦バリ方向はどちらでもよい。

全せん断面への対策検討


特殊な加工技術が必要。ファインブランキング(精密せん断)法とシェービング(切削せん断)法を検討

ファインブランキング法

板押さえの突起により、静水圧 をかけた状態で打ち抜くことによ り、全せん断面をつくる方法

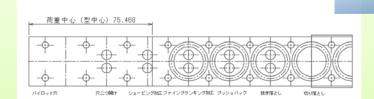
試作実験

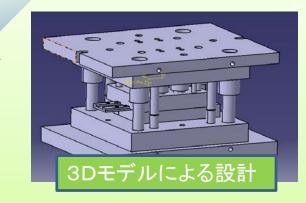
全せん断面 の外周作成 に成功!

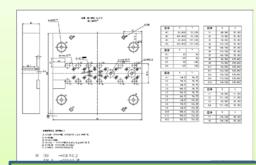
Ħ

シェービング法

一般的なせん断を行った後に, 表面を削り取り、全せん断面を つくる方法




全せん断面 の穴あけに 成功!



金型設計

ストリップレイアウトの決定

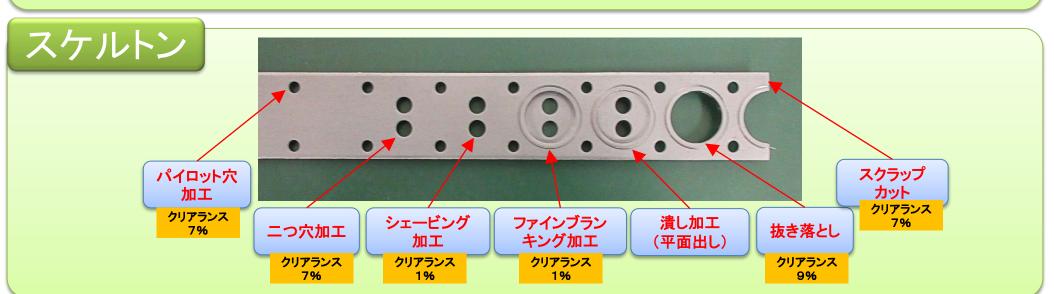
加工を配慮した部品製図

順番に加工する順送金型構造を用い、荷重中心に注意して、当校のプレス機で加工可能な設計を行った。

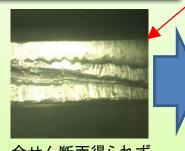
金型組み立て

加工した金型部品を組み立て、合口あわせにて紙が切れる様に位置調整する。

せん断面


良好となるが

2mmの以上の

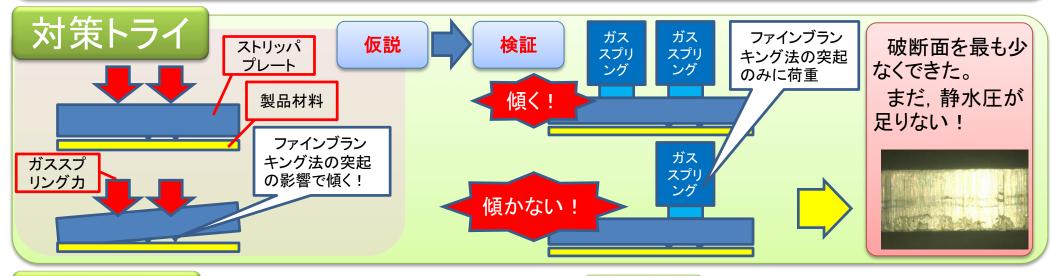

シムアップは,

変化無し。

全せん断面得られず。

製品側面を観察!

対策


静水圧不足

使用するガスス プリングをシム アップして荷重UP 結果 破断断面

全せん断面得られず。

力が出ない!

ストリッパ (板押さえ) プレートの傾 きが原因?

製品評価

	1000
①環境にやさしい	0
②外周(直径18mm±0.03mm)と穴(直径6mm±0.02mm)の せん断面は,板厚(2.2mm~2.3mm)の75%以上のこと。	×
③製品底面平面度は, 0.07mm以内に収めること。	0
④穴の内面の面粗度規定(Rz10以下)は, せん断面のみに 適用する。	0
⑤穴の位置精度は, 0.05mm以内に収めること。	×
⑥ダレは外周で0.5mm以内, ダレ高さは0.2mm以内に収めること。	×

穴寸法小径化の原因 は、ファインフランキング 工程での穴つぶれによ る。この対策として、穴に パイロットを入れてファイ ンブランキング加工した ら良いと考えた。

ガススプリングの位置 や他の対策についても 実現するには、金型の作 り直しが最善となる。

まとめ

- ①順送金型の設計・製作を行うことができた。
- ②今回の卒業研究を通して、初挑戦の苦しみと 楽しみを味わえた。最初に問題点を考え、試作 を行ったが、想定外の問題が発生し戸惑った。 考えるだけでなく実際に作って確かめる重要性 を強く実感した。今後の金型製作に携わる上で 貴重な経験をすることができた。

穴へのパイロット対策が、位置精度とダレの対策にもなる!